

JWildfire tutorial on: image mapping on
fractal flames - using the
(post_)colormap_wf variation
by thargor6 (http://thargor6.deviantart.com/)
Version 0.1

The following tutorial describes how to create amazing - and refreshingly different looking - fractal

flames by applying bitmap images to it - either as color map or bump map or both.

All you will need is a recent copy of JWildfire (Version 0.50 or higher is recommended) and some own

images (*.png or *.jpg) to play with.

http://thargor6.deviantart.com/

Table of Contents
1 Introduction .. 3

1.1 The post_colormap_wf and colormap_wf variations ... 3

1.2 Coordinates ... 3

1.3 Colors ... 4

2 Examples ... 5

2.1 Getting started with a simple rectangular shape .. 5

2.2 Reproducing the simple shape .. 7

2.3 Generating an optimized gradient .. 8

2.4 Using multiple images ... 8

2.5 Using bump-mapping .. 9

2.6 Creating more interesting shapes ... 9

1 Introduction

JWildfire is the spiritual successor of the image processing software Wildfire\7 PPC for the Amiga. So

dealing with bitmap graphics is more than natural for (J)Wildfire because it's originally designed to

do that. And if you explore the menu items and windows beside the fractal flame editor you will face

lots of functions which deal with changing or generating bitmap graphics.

So it was only a question of time when I would try to combine fractal frames and bitmap graphics -

the result are post_colormap_wf and colormap_wf variations and some additions to the renderer.

1.1 The post_colormap_wf and colormap_wf variations
The postcolormap_wf and colormap_wf variations are used to modify

 the absolute color (R, G, B)

 the color index

 the z-coordinate (optional)

by reading color information from an external bitmap graphic.

The difference between this variations is just in the usage of the texture coordinates.

The post_colormap_wf variation takes the coordinates which were affected by all of the (non-post)

variations as input and projects them onto the image to retrieve color information.

The colormap_wf variation takes the coordinates from the affine transform ("triangle") as input,

respectively.

1.2 Coordinates
If we have an image of the dimension width x height we can define pixel coordinates in the 0...width-

1 x 0...height-1.

Those coordinates are automically mapped into the range -0.5 ... 0.5 x -0.5 ... 0.5 of fractal flame

coordinates. I. E. if you create a fractal flame which consists of a square shape of size 1.0 x 1.0 it will

fit the whole image. We wll try out this example later in this tutorial.

There are additional parameters to stretch or move this texture.

1.3 Colors

As noted above the post_colormap_wf and colormap_wf variations modify both color and color

index and you my ask why.

The reason for this is the process of rendering a fractal flame. Depending on the transforms used and

the weights set, they are projecting themselves each to another.

I. E. there occurs a reproduction of shapes... and colors. The reproduction of colors is driven by color

index and the color symmetry (also known as color speed).

The color index is chosen accordingly to the original color of the image data and the currently used

color gradient. I. E., if you use a gradient which does not reflect the colors of your image very well

you may get not the expected results.

Changing the gradient may improve the results in such cases dramatically.

Note that both the computed color index and the gradient in case of the (post_)colormap_wf

variations only applies to reproduced shapes.

On the first iteration step the original colors of the image are used! This makes it possible to use any

number of bitmap graphics with any colors in a fractal flame. At the first iteration all those shapes

remain the original image colors. Only at further reproduction steps the colors are computed

accordingly to color index and the gradient. But not in all cases it makes sense to have reproduction

enabled at all.

2 Examples

2.1 Getting started with a simple rectangular shape
Create a new fractal by hitting the "New from scratch" button.

Change the "Variation 1" on the "Transformations/Nonlinear" tab to "square".

Increase "Pixels per unit" on the "Camera" tab to 150 so that the square is filling the preview area:

Set "Variation 2" on the "Transformations/Nonlinear" tab to "post_colormap_wf", set the value to

1.0. The rectangle is filled with the default image, a simple gradient. Note that the gradient applies

with all of its colors, no matter which gradient you use:

Now enter the post transform editing mode by clicking the "P" button right of the preview area. You

may freely modify the shape as usual - now with applied image texure:

Now let's use some external image, just click the "..." button right of the parameter

"image_filename" of "Variation 2" on the "Transformations/Nonlinear" tab.

A file dialog appears, just select any image of your choice and keep playing with the transform

controls until you are get a satisfying result, e.g.:

2.2 Reproducing the simple shape
Add a second transform by clicking the "Add" button on the "Transformations" tab.

Turn off the post-transform-editing mode by clicking again at the "P" button right in the preview area

so that it appears "off".

Set the "Pixels per Unit" on the "Camera" tab to 150, i. E. zoom out a little bit.

Select the newly created 2nd transform and move it about unit to the right, scale it halve down and

turn it a little bit so that it appears like this:

The shape now is replicated but has strange colors. Change this by changing the "Symmetry" value on

the "Transformations/Color" tab to 1.0. Now JWildfire tries to find color indices fitting to the current

gradient.

2.3 Generating an optimized gradient
The current result may fit at this stage or may not, it just depends on the gradient.

But you can calculate a gradient from an image! Just press the "Create from image" button on the

"Gradient/Create" tab and choose your image again. JWildfire creates now a new gradient by

choosing the "most important" colors from this image.

You may also adjust the "CentreX" and "CentreY" to center your fractal and should now get a decent

result:

2.4 Using multiple images
You may use as any number of images you want. In this example you should just duplicate the first

transform and use different images, e.g.:

For good results the gradient should be an "average" for all used images. You may create such a

gradient by just creating a larger image which contains all images uses for mapping and use "Create

from image" function again

2.5 Using bump-mapping
You can also use the color information of the color map to apply additional bump-mapping. Just bring

your fractal into 3rd dimension, for example by changing the pitch to 25. It should still appear to be

flat. Change this by setting the "scale_z" parameter of the "Variation 2" so a value between -0.3 and

0.3. This cause the points to be moved into z-direction according to the luminosity of the image map:

2.6 Creating more interesting shapes
You can now create more interesting shapes by using all the techniques you already know, e.g. you

could apply a final transform, for example Julia3Dz:

Or just apply a script to it, for example the "Soft Julian" script:

Or you could just go back to start from scratch and to create something totally different, there are no

limits - you already know what now follows...

Have fun to try your own things! :-)

(The original photograph used above was supplied by Katie Shelby - thanks Katie :-) All other images

were created my myself.)

